Results

Conclusion

Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution American Geophysical Union (AGU) Fall Meeting 2023

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch

San Francisco, CA (USA)

11-15 December, 2023

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch

Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

San Francisco, CA (USA)

Introduction ●○	Experiments and Discussion	Results 000000	

2 The dataset

- **3** Experiments and Discussion
- 4 Results
- **6** Conclusion

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution San Francisco, CA (USA)

Introduction	The dataset	Experiments and Discussion	Results	Conclusion
⊙●	00		000000	00
Goal of the	project			

Machine Learning Goal

Be able to predict the magnetogram 1 day before.

Why do we want to do this analysis?

Make more powerful solar flare predictions and better understand the evolution of the active regions.

The dataset ●○	Experiments and Discussion	Results 000000	

2 The dataset

- **3** Experiments and Discussion
- 4 Results
- **6** Conclusion

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

San Francisco, CA (USA)

Introduction 00	The dataset ⊙●	Experiments and Discussion	Results 000000	Conclusion
Data sources				

We used the following data sources:

- Solar Flare events catalogue: A new catalogue of solar flare events from soft X-ray GOES signal in the period 2013–2020 (Nicola Plutino et al 2023),
- SDO/HMI:
 - Magnetogram 24h before flaring time,
 - 2 Magnetogram at flaring time,
 - 94 Å 24h before flaring time,
 - 4 131 Å 24h before flaring time,
 - 5 193 Å 24h before flaring time.
- The total number of paired images is 43912.

	Experiments and Discussion ●0000	Results 000000	

2 The dataset

- **8** Experiments and Discussion
- 4 Results

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution San Francisco, CA (USA)

i / 18

Introduction	The dataset	Experiments and Discussion	Results	Conclusion
00	00		000000	00
Previous work	of Diffusion M	Indel in Solar Physics		

F. P. Ramunno et al 2023 (under review)

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch

San Francisco, CA (USA)

Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

Previous work of Diffusion Model in Solar Physics

Generated augmentations are better than classical augmentations (F. P. Ramunno et al 2023 (under review)).

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch	San Francisco, CA (USA)
Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution	

Introduction	The dataset	Experiments and Discussion	Results	Conclusion
00	00		000000	00
Palette-like ap	oproach			

- To apply the Denoising Diffusion Probabilistic Models for Image-to-Image translation we applied the Palette approach (Chitwan Saharia et al 2021),
- Given a set of paired data (x_i, y_i) , where:
 - 1 x_i : input image,
 - \bigcirc y_i : target image,

we noise the target image with a certain number of timesteps t and then we concatenate them channel-wise and pass through the model.

Introduction	The dataset 00	Experiments and Discussion	Results 000000	Conclusion
Experiment	s setup and la	belling systems		

We use the following setup:

• Image resolution: [128×128, 256×256],

We perform the following distinct experiments:

- Magnetograms 24h to Magnetograms at flaring time,
- Magnetograms + 94 Å 24h to Magnetograms at flaring time,
- Magnetograms + 131 Å 24h to Magnetograms at flaring time,
- Magnetograms + 193 Å 24h to Magnetograms at flaring time

	Experiments and Discussion	Results ●00000	

2 The dataset

- **3** Experiments and Discussion
- **4** Results

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

San Francisco, CA (USA)

.1 / 18

Introduction	The dataset	Experiments and Discussion	Results	Conclusion
00	00		0●0000	00
Metric Res	ults			

Metric	Mag	Mag + 94 Å	Mag + 131 Å	Mag + 193 Å
FID ↓	0.009	0.262	0.226	0.259
LPIPS ↓	0.026 ± 0.014	0.032 ± 0.016	0.032 ± 0.017	0.032 ± 0.019
PSNR ↑	$\textbf{21.1} \pm \textbf{1.92}$	20.1 ± 1.99	20.0 ± 1.98	20.0 ± 2.03
SSIM ↑	0.691 ± 0.047	0.667 ± 0.051	0.650 ± 0.064	0.660 ± 0.054

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch

San Francisco, CA (USA)

Aagnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

Introduction	The dataset	Experiments and Discussion	Results	Conclusion
00	00		00●000	00
Vieual inco	action			

2015-08-23 15:06:37

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch	San Francisco, CA (USA)
Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution	13 / 18

Introduction 00	The dataset 00	Experiments and Discussion	Results 000●00	Conclusion
A /tanal tanan				

2015-08-23 15:06:37 AR=12403

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch	San Francisco, CA (USA)
Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution	

Introduction	The dataset	Experiments and Discussion	Results	Conclusion
00	00		0000●0	00
Zero shot p	prediction			

Input Image Time: 2015-09-19 00:30:33

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch S Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

San Francisco, CA (USA)

Zero shot prediction

San Francisco, CA (USA)

Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch

	Experiments and Discussion	Results 000000	Conclusion ●O

2 The dataset

- **3** Experiments and Discussion
- 4 Results
- **5** Conclusion

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

San Francisco, CA (USA)

Introduction	The dataset	Experiments and Discussion	Results	Conclusion
00	00		000000	○●
Conclusion				

- The usage of more wavelengths is not enhancing the model results, thus it is better to use magnetogram only as input data,
- The average percentage variation in terms of the total unsigned magnetic flux is around 6%, but more analysis are needed,
- The model is able to do "zero-shot" prediction more than one day in advance,
- We want to determine:
 - The total unsigned magnetic flux,
 - 2 The net magnetic flux,
 - S The area of the active region,
 - 4 The orientation of the polarity inversion line,

What are the DDPMs?

Adapted from Ho et al. 2020

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch

San Francisco, CA (USA)

Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

What are the DDPMs?

Diffusion Probabilistic models are very popular nowadays and we can summarize their usage into the following bullet points:

• Forward process or noising process (Ho et al., 2020):

$$q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1}), \ q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathcal{I})$$
(1)

Reverse process or denoising (Ho et al., 2020):

$$p_{\theta}(x_{t-1}|x_t) := \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$
(2)

• Classifier Free Guidance (Ho Salimans, 2022)

$$\tilde{\epsilon_{\theta}}(z,c) = \epsilon_{\theta}(z,c) + w \cdot (\epsilon_{\theta}(z,c) - \epsilon_{\theta}(z))$$
(3)

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch	San Francisco, CA (USA)
Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution	

Distribution of the images per GOES class

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch San Fi Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

San Francisco, CA (USA)

Time distribution

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch

San Francisco, CA (USA)

Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution

Unet

Metrics

• FID:

•
$$FID(x,g) = ||\mu_x - \mu_g||^2 + Tr(\Sigma_x + \Sigma_g - 2(\Sigma_x \Sigma_g)^{(1/2)}),$$

• PSNR:

$$\bigcirc \mathsf{PSNR} = 10 \cdot \log_{10} \left(\frac{\mathsf{MAX}^2}{\mathsf{MSE}} \right)$$

• SSIM:

1 SSIM
$$(x, y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

• LPIPS: L2 Norm in a VGG latent space.

F. P. Ramunno, A. Csillaghy FHNW - francesco.ramunno@fhnw.ch

San Francisco, CA (USA)

Magnetogram-to-Magnetogram (M2M): Generative Forecasting of Solar Evolution